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Constrained Thermal Motion Refinement for a Rigid Molecule with Librating Side Groups 
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Fourth-order thermal motion equations applicable to a rigid molecule with librating side groups are 
derived for a molecule located on an arbitrary site. It is assumed that the displacements of the rigid 
body and librating side groups can be characterized by Gaussian distributions. The equations are used 
to analyse methyl-group librational motion in the molecule naphthyridinomycin. The results correlate 
well qualitatively with semi-empirical quantum mechanical energy calculations. Calculation of the trace 
of the libration-translation coupling tensor S is possible. Allowance for more than one internal mode 
contributing to an atom is discussed. 

Introduction 

Recently a thermal motion analysis was developed for 
a rigid molecule with librating side groups (Prince & 
Finger, 1973). The treatment utilized the cumulant ex- 
pansion technique of Johnson (1969). The resulting 
equations for thermal motion were derived, however, 
only for a molecule situated on a centre of symmetry. 
In this article, the thermal motion analysis of a rigid 
molecule with librating side groups is extended to a 
molecule located on an arbitrary site. Results of the 
analysis are applied to the thermal librational motion 
of the methyl groups present in the molecule naph- 
thyridinomycin (Sygusch, Brisse & Hanessian, 1974). 

Mathematical analysis 

The instantaneous displacement of an atom from its 
equilibrium position due to rigid-body rotation has 
been derived to fourth order by Prince & Finger (1973) 
and is 

u =  1 . . . .  (~ ,x r )+  ½ - 2 4  [~ ,x(~xr) l  (1) 

where u represents the displacement vector, ~, represents 
an axial vector with magnitude 2 about which instan- 
taneous rotation of the rigid body occurs, r represents 
an atomic position vector. 

It should be noted that the position vector is defined 
from the centre of mass of the rigid body about which 
instantaneous rotation of the rigid body is presumed 
to occur. The expression of the ith component of u 
can be simplified by the use of appropriate symmetric 
tensors. Expanding to fourth order u~ has the form 
(Prince & Finger, 1973): 

3 3 3 

Ul= ~ {A(r)iJ)~J+ ~ (B(r)ijk~'J~k + ~ [C(r)ljkl~Jd~k~t 
j = l  k = l  1=1 

3 

q- ~ D(r)ijktm~j~k~t~m])} ( 2 )  
n = l  
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where A, B, C and D represent the symmetric tensors 
whose coefficients are defined by the correspondence 
to the appropriate terms in (1). These coefficients are 
linear functions of r and are listed in Table 1. 

If ra and rb designate two rigid-atom position vectors 
which define an axis of libration r ' = r b - r a  then under 
rigid-body rotation this axis will have displacement u' 
according to (1). It should be noted that this displace- 
ment u' and a subsequent displacement u" are inde- 
pendent of any coordinate origin chosen since the axis 
of rotation is based upon a positional difference vector. 
Prince & Finger have derived the instantaneous dis- 
placement v due to librational motion for any atom r 
about this axis while the rigid body as a whole is un- 
dergoing rotational motion, then 

v = ( 1 - 0 2 / 6 )  [0 x (r" + u")] 
+ (½-02/24) {0 x [0 x (r" + u")]} (3) 

where r"  represents the positional difference vector 
r - r b ,  r being an atom which librates about axis r', 
0 is the axial vector of magnitude 0 defined as 0( r '+  u')/ 
Ir'l, u" is the instantaneous rigid-body rotational dis- 
placement of positional difference vector r". 

The ith component of the librational displacement 
vector v can be expanded in a manner analogous to (2). 
Prince & Finger, however, were able to simplify the 
equation through the definition of two additional vec- 
tors R = r ' x  r"  and R ' - r ' x  R. The component vt can 
be written as 

v~ "" ORdr' + 02R~/2r'2 _ 03Rd6r , _ 04R~/24r,2 

+ 
j = l  

3 

+B(R )ijk2j2kO /2r '2 + ~ [B(R)~jk2j).kO/r' ' 2 
k = l  

3 

+ ~ C(R),jk,2j2k2,0/r']}. 
/=1 

3 

' -  A(R)ij2j0 /6r + A(R ) t jz j0 /2r  {A(R)ij2jO/r 3 , , - 2 ,2 

(4) 

The total displacement of the atom from its equilibrium 
position due to both rotational and translational mo- 
tion is then w = u + v + t ,  where t represents the instan- 
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taneous  translat ional  displacement of  the entire mol- 
ecule or rigid body. 

The time averages required for the calculation of  the 
first, second and third-order moments  of  the distribu- 
tion of w are assumed to be equivalent to spatial aver- 
ages taken about the appropriate equi l ibr ium posi- 
tions. It will be assumed that deviations from nor- 
mali ty of the spatial distribution functions are small 
and can be neglected. The first-order moments  of  the 
rigid-body librational and translat ional  components,  ;t~ 
and h, respectively, as well as of  the side-group par- 
ameter 0 are considered to be small with respect to 
higher-order moments  and therefore are set to zero. 
It will also be assumed that the side-group l ibrat ion 
is not coupled to other side-group librations nor to 
the rigid-body motions. Then the second-order mom- 
ents for ~ and t can be summarized by the moment  
matrix (Schomaker & Trueblood, 1968) 

sT) 
where L = @ ~ r )  is the conventional  l ibrational tensor, 
S = @ t  r> is the coupling or screw tensor, and T =  
<tt r> is the translat ional  tensor. The second-order 
moment  for the l ibrational motion of a side group is 

It should be noted that because of  the normal  distri- 
but ion any fourth-order moment  can be specified in 
terms of its second-order moments  (Johnson, 1969; 
Kubo,  1962). Truncat ing at fourth order any terms in 
2 .  h and 0. the first three cumulants  and their deriva- 
tives to fourth order are then obtained by the follow- 
ing relation: 

Ix t = r~ + / h  (5) 
with 

p,= 2 ~. Ljk[B(r)ijk + 6 ~ D(r)ljk,,.L,m/(l + Jtm)]/(l + Jig) 
j>_k l>_m 

+ ( O / 2 r  '2) [RI + 2 ~ B (R ' ) , s kL j J (1  +ask)] 
)>k 

- R ; O 2 / 8 r  '2 (6) 

and its derivatives 

apt 
[2B(r)tik + 24t>~mD(r)iik~mL~/(1 + fi~m) 

3Ljk 

+ (O/r'2)B(R'),~k]/(1 + a~) (7) 
and 

c~p~ 
ao 2 a(R%kLjk/(1 

j>k  

- R'~O/4r '2. (8) 

Simplification and reduction in the expressions for the 
second and third cumulants  is achieved by defining 
certain subsums, Q. Define 

Q ~ ( i , j , k , l , m , n ) =  3[A(r)ikC(r)jtm n + A(r)jkC(r)tlmn] 

+ 2B(r)~kmB(r)jt . ,  (9) 

Q 2 ( i , j , k , l ) = 3  ~ [Sm~C(r)jktm+S,.jC(r)~k~m], (10) 
m 

Q3(i,A k,  I) = A ( r ) J j z  + A(r)jkO. 

+ ~ Lm.[OnC(r)jkm,, + fijzC(r)ikm.], (1 1) 
/Tl~n 

t t Q'4( i , j , k , l )=(½ r'2) {2[A(r)~kA( R )i~ + A(r)jkA(R )u] 

+A(R)~kA(R)j~ + B ( R ) m R j  + B(R)~kzR~} (12) 

A ( r )  

i/j 1 
1 o 

2 - r3  
3 r2 

Table 1. The values o f  the coeff icients  A(r)ij, B(r)~jk, C(r)tjkt and  D(r)ijktm 

In each case only the unique coefficient is represented. 

2 3 

r 3 ~ r 2 

0 r a  

- r l  0 

B(r) 
i/jk 11 12 13 22 23 33 
1 0 1/4r2 1/4r3 - 1/2rl 0 - 1/2rl 
2 - 1/2r2 1/4rl 0 0 1/4r3 - 1/2r2 
3 - 1/2r3 0 1/4rt - 1/2r3 1/4r2 0 

C(r) 
//jkl 111 112 113 122 123 133 222 223 233 333 
1 0 - 1/18r3 1/18r2 0 0 0 - 1/6r3 1/18r2 - 1/18r~ 1/6r2 
2 1/6r3 0 - 1/18rl 1/18r3 0 1/18r3 0 - 1/18rl 0 - 1/6rl 
3 - 1/6rz 1/18rl 0 - 1/18r2 0 - 1/18r2 1/6ri 0 1/18rx 0 

D(r) 
i/jklm 1111 1112 1113 1122 1123 1133 1222 1223 1233 1333 
1 0 - 1/96r2 - 1/96r3 1/144rl 0 1/144rl - 1/96r2 - 1/288r3 - 1/288r2 - 1/96r3 
2 1/24r2 - 1/96r~ 0 1/144r2 - 1/288r3 1/72r2 - 1/96rl 0 - 1/288rl 0 
3 1/24r3 0 - 1/96rl 1/72r3 - 1/288r2 1/144r3 0 - 1/288r~ 0 - 1/96rl 

2222 2223 2233 
1/24r, 0 1/72r1 
0 - 1/96r3 1/144r2 
1/24r3 - 1/96r2 1/144r3 

2333 3333 
0 1/24rl 

- 1/96r3 1/24r2 
- 1/96r2 0 
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Fig. 1. Variation of potential energy as a function of torsional 
angle O(A-B). Positive sense is defined as clockwise rota- 
tion when viewing from A to B. The zero position of each 
methyl group was defined as the crystallographically ob- 
tained position. The broken line summarizes potential en- 
ergy calculations about C-C and O-C bonds. The full line 
represents potential energy calculations about the N-C bond. 

and 
a'~(i,j,k,l)=(½r '2) [A(R'),~d,~ + A(R')~kdU] (13) 

then the second cumulant  2tc~j and its derivatives are 

~-tqj= ~ La[Q'2(i,j,k,l)+ ~ Lm,,Q;(i,j,k,l,m,n) 
k,! m,n 

+ A(r)tkA(r)l l + OQ~(i,j,k,/)] 

+ ~{Smt[A(r)sm + OQ's(i,j,m,j)]/(1 +iJts) 
m 

+ Sms[A(r)t= + OQ's(i,j,m,i)]/(1 +fits)} 

+(ORtR.Jr 'z) (1-O)+(02R' tRj /2r '4)+ T,j;  (14) 

c32Kti - dm~d.v , (15) 
&Tm, 

82Ktj 

3Lkt 

and 

~21~lj 

c30 

- { ~ Lm,.[Q~(i,y,k,l,m,n)+Q~(i,j,l,k,m,n) 
m,ll 

+ O~(i,j,m,n,k,l) + a~(i,j,m,n,l,k)] 
+ 2Q'2(i,j,k,l) + A(r)tkA(r)jt + A(r)uA(r)ig 
+ o[a'4(i,j ,k,l)+ a'4(i,j,l,k)]}/(1 +6k~), 

c32~CtJ -- Q~(i,j,k, 1) + oo's(i,j,k, l) 
3Skt 

(16) 

(17) 

- ~ LktQ'4(i,j,k,l)+ ~ [SmjQ's(i,j,m,i)/(1 +dtj) 
k.l m 

+ SmtQ'5(i,j,m,j)/(1 + at,)] 
+ ( 1 / r  '2) {RtRj+ 2O[(R~Rj/2r'2)--RtRA}. (18) 

The necessary subsums for the third cumulant  aX~jk 
and its derivatives are defined as 

Q'l" (i,J, k, 1l, m, n,p) = 2[A(r)uA(r)jnB(r)kmp 
+ A(r)jtA(r)k.B(r)tmp + A(r)k,A(r),.B(r)jmp], (19) 

Q'a'(i,j,k,l,m)= 2 ~ {S.,[A(r)jtB(r)km. + A(r)ktB(r)jm.] 
n 

+ Snj[A(r)uB(r)kmn + A(r)ktB(r)tmn] 
+S.k[A(r).B(r)jm.+A(r)jtB(r)tm.]}, (2O) 

Q'a'(i,j,k,l,m)= 2 ~ L.Aam,[A(r)j.B(r)~pt + A(r)k.B(r)j~,] 
n,p 

+ a~j[A(r),.B(r)kp, + A(r)~.B(r)t~t] 
+ a~[A(r),nB(r)j~t + A(r)j.B(r)t~,]}, (21) 

Q4'(i,j,l~, l,m) = 2a~t ~ [B(r)jt.S.k + B(r)kt.S.j] 
n 

+ amj ~ [B(r)..S.k + B(r)kt.S.,] 
n 

-~-(~mk ~ [ B ( r ) . . S . j +  B ( r ) j t . S . d ,  ( 2 2 )  

n 

Q's'(i,j,k,l,m)=(1/r 'z) {Rt[A(r)jtA(R)km + A(r)~tA(R)jm] 
+ &[A(r),,A(R)~m + A(r)k,A(R),m] 
+ Rk[A(r),tA(R)~+A(r)j,A(R)t,.]}, (23) 

Q6"(i,j,k,l,m)=(1/r '2) {6mt[A(R)jtRk + A(R)uRj] 
+ amj[A(R),,Rk + A(R)R,R,] 
+ amk[A(R)ttRj + A(R)j,Rt]},  (24) 

O'v'(i,j,k)=(1/r '4) [R~R.,,Rk + RtRjRk + R,R.iR'k] . (25) 

The third cumulant  3x~ik and its derivatives then be- 
come 

aK,jk = ~ Ltm[O'i(i,j,k,l,m)+ ~ L,,,O'((i,j,k,l,m,n,p) 
l,m n,p 

+ OQ's'(i,j,k,l,m)] + B(r)ttm(StjS,nk + SmjS,k) 
+ B(r)jtm(SuSmk + Sm~Stk) + B(r)ktm(SuSm~ + S=~Stj) 
+69 ~ [SuQ6"(i,j,k,l,i)/(1 +fi,.j+atk) 

1 

+ stjo'6'(i,j,k,l,j)/(1 + 6., + djk) 
+StkQ'6'(i,j,k,l,k)/(1 +dkt+akj)]+O2Q7"(i,j,k); (26) 

~s tc t.tk 
aLtm - { ~ L'p[a'1"(i'j'k'l'm'n'p)+ Q'~'(i'j 'k'm'l'n'p) 

n,p 

+ Q'~'(i,j,k,n,p,l,m)+ Q'~'(i,j,k,n,p,m,l)] 
+ Q'z'(i,j,k,l,m) + Q'z'(i,j,k,m,l) 
+8[Q's'(i,j,k,l,m)+Q's'(i,j,k,m,l)]}/(1 +6,m) , (27) 

~3Ktjk -Q'3'(i,j,k,l,m) + Q'4"(i,j,k,l,m) + OQ6"(i,j,k,l,m) 
c~Stm 

(28) 
and 

c33tqjk 
O-----O- - ~ L,mQ'j(i,j,k,l,m)+ 20Q7"(i,j,k) 

ml, 

+ ~ [SuQ6'(i,j,k,l,i)/(1 + a , , + a , k )  
i 

+ S,jQ6" (i,j,k,l,j)/(1 + fijt + ~jk) 
+stko'6'(i,j,k,l,k)/(1 +dkt +~kj)] • (29) 
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Discussion 

These equations are the generalized form of the equa- 
tions developed by Prince & Finger. They have been 
incorporated into a least-squares refinement program 
which has been used to analyse methyl-group libra- 
tional motion in the molecular crystal of naphthyridi- 
nomycin (see inset in Fig. 1). The details of the X-ray 
structure solution have been presented elsewhere 
(Sygusch, Brisse & Hanessian, 1974; Sygusch, 1974). 
The conventional crystallographic residual R(IFI) for 
the constrained thermal-motion refinement was 0.043. 
Thermal librational amplitudes for the three methyl 
groups obtained in naphthyridinomycin and in durene 
(Prince, Schroeder & Rush, 1973) are given in Table 2. 
From Table 2, it is apparent that the thermal ampli- 
tudes of the C-C and O-C methyl groups are statis- 
tically identical in naphthyridinomycin and are very 
similar to the C-C methyl-group librational amplitudes 
determined by Prince, Schroeder & Rush (1973) in 
durene. The amplitude for librational motion about 
the N-C bond was found to be significantly smaller 
than the amplitudes about the other two bonds. To 
examine this difference, PCILO conformational energy 
calculations (Diner, Malrieu & Claverie, 1969) were 
undertaken on naphthyridinomycin. A 1.08 A standard 
bond length was assumed for all methyl groups. Then 
for each methyl group, the conformational energy was 
evaluated as a function of the torsional angle about 
bonds N-C, C-C and O-C. The results are presented 
in Fig. 1. The variations in energy about bonds C-C 
and O-C were indistinguishable to within 0.1 kcal 
mo1-1 and thus were presented as a single curve. The 
rate of change of potential energy about the zero posi- 
tion is significantly greater for the N-C  methyl group 
than for the other two; thus a smaller amplitude of 
libration is predicted for the N-C  methyl group. This 
correlates well qualitatively with the experimental 0 

Table 2. Methyl-group libration 

Mean square amplitude O units are in radians 2. 

Rotation a x i s  Naphthyridinomycin Durene 
N-C 0.003 (18) 
C-C 0.076 (28) 0.142 (5)* 
O-C 0.106 (39) 

* Average of two chemically identical methyl groups. 

values suggesting that the smaller amplitude about the 
N-C  bond is indeed real. 

It has been pointed out by Schomaker & Trueblood 
(1968) that the trace of S cannot be determined since 
only the differences S ,  - S~ enter into their calculations. 
The inclusion of third and fourth-order terms removes 
this indeterminacy in the trace of S and allows deter- 
mination individually of the diagonal elements of S. 
In practice, however, we find that the diagonal ele- 
ments are poorly determined (i.e. they have a large 
standard deviation) and are highly correlated (0"999). 
This is true since the indeterminacy is only removed at 
third order in the equations and thus differences in the 
derivatives for the S ,  cannot enter strongly into the 
sums for the normal equation matrix. Imposition of 
the constraint that the trace of S be zero yielded low 
standard deviations and no significant correlations 
among the remaining diagonal elements of S. 

It is possible that more than one internal mode may 
contribute to the displacement of an atom from its 
equilibrium position. If the coupling between the vari- 
ous modes contributing to the displacement of an 
atom is neglected, the instantaneous displacement can 
be represented as the sum of the individual modes in 
addition to the overall molecular displacement. The 
neglect of coupling can be minimized if the internal 
mode displacements are chosen to be orthogonal. 

The author would like to thank the National Re- 
search Council of Canada for the award of a scholar- 
ship, and Drs F. Brisse, T. Cyr and G. Williams for 
their encouragement and helpful discussions. 
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